Glucokinase Activation Ameliorates ER Stress–Induced Apoptosis in Pancreatic β-Cells

نویسندگان

  • Jun Shirakawa
  • Yu Togashi
  • Eri Sakamoto
  • Mitsuyo Kaji
  • Kazuki Tajima
  • Kazuki Orime
  • Hideaki Inoue
  • Naoto Kubota
  • Takashi Kadowaki
  • Yasuo Terauchi
چکیده

The derangement of endoplasmic reticulum (ER) homeostasis triggers β-cell apoptosis, leading to diabetes. Glucokinase upregulates insulin receptor substrate 2 (IRS-2) expression in β-cells, but the role of glucokinase and IRS-2 in ER stress has been unclear. In this study, we investigated the impact of glucokinase activation by glucokinase activator (GKA) on ER stress in β-cells. GKA administration improved β-cell apoptosis in Akita mice, a model of ER stress-mediated diabetes. GKA increased the expression of IRS-2 in β-cells, even under ER stress. Both glucokinase-deficient Akita mice and IRS-2-deficient Akita mice exhibited an increase in β-cell apoptosis, compared with Akita mice. β-cell-specific IRS-2-overexpressing (βIRS-2-Tg) Akita mice showed less β-cell apoptosis than Akita mice. IRS-2-deficient islets were vulnerable, but βIRS-2-Tg islets were resistant to ER stress-induced apoptosis. Meanwhile, GKA regulated the expressions of C/EBP homologous protein (CHOP) and other ER stress-related genes in an IRS-2-independent fashion in islets. GKA suppressed the expressions of CHOP and Bcl2-associated X protein (Bax) and protected against β-cell apoptosis under ER stress in an ERK1/2-dependent, IRS-2-independent manner. Taken together, GKA ameliorated ER stress-mediated apoptosis by harmonizing IRS-2 upregulation and the IRS-2-independent control of apoptosis in β-cells.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

CHOP Deficiency Ameliorates ERK5 Inhibition-Mediated Exacerbation of Streptozotocin-Induced Hyperglycemia and Pancreatic β-Cell Apoptosis

Streptozotocin (STZ)-induced murine models of type 1 diabetes have been used to examine ER stress during pancreatic β-cell apoptosis, as this ER stress plays important roles in the pathogenesis and development of the disease. However, the mechanisms linking type 1 diabetes to the ER stress-modulating anti-diabetic signaling pathway remain to be addressed, though it was recently established that...

متن کامل

PLIN2 is a Key Regulator of the Unfolded Protein Response and Endoplasmic Reticulum Stress Resolution in Pancreatic β Cells

Progressive pancreatic β cell failure underlies the transition of impaired glucose tolerance to overt diabetes; endoplasmic reticulum (ER) stress expedites β cell failure in this situation. ER stress can be elicited by lipotoxicity and an increased demand for insulin in diabetes. We previously reported that the lipid droplet protein perilipin 2 (PLIN2) modulates lipid homeostasis in the liver. ...

متن کامل

Caspase-2 and JNK activated by saturated fatty acids are not involved in apoptosis induction but modulate ER stress in human pancreatic β-cells.

BACKGROUND Fatty acid-induced apoptosis and ER stress of pancreatic β-cells contribute to the development of type 2 diabetes, however, the molecular mechanisms involved are unclear. AIMS In this study we have tested the role of caspase-2 and suggested ER stress mediator JNK in saturated fatty acid-induced apoptosis of the human pancreatic β-cells NES2Y. RESULTS We found that stearic acid at...

متن کامل

Effects of lipotoxicity on a novel insulin-secreting human pancreatic β-cell line, 1.1B4.

The novel insulin-secreting human pancreatic β-cell line, 1.1B4, demonstrates stability in culture and many of the secretory functional attributes of human pancreatic β-cells. This study investigated the cellular responses of 1.1B4 cells to lipotoxicity. Chronic 18-h exposure of 1.1B4 cells to 0.5 mm palmitate resulted in decreased cell viability and insulin content. Secretory responses to clas...

متن کامل

Dynamin-related protein 1 is implicated in endoplasmic reticulum stress-induced pancreatic β-cell apoptosis.

Pancreatic β-cell dysfunction is a critical component in the pathogenesis of diabetes. Endoplasmic reticulum (ER) stress is one of the factors that induces pancreatic β-cell dysfunction, but the underlying mechanisms have not been well elucidated. In this study, we report that a mitochondrial fission modulator, dynamin-related protein 1 (DRP-1), plays an important role in ER stress-induced β-ce...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 62  شماره 

صفحات  -

تاریخ انتشار 2013